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Making use of the approximate expression for the total enErgfya system, in terms of the chemical potential

« and the hardnesg E[p] = Neu — %2 N2 + Ecord 0] , WhereNe is an effective number of valence electrons

and Eqod p] represents the core contribution to the total energy, it is shown that the interaction between
species whose softnesses are approximately equal is energetically favored, relative to the interaction between
species whose softnesses are very different from each other.

The statement “hard acids prefer to coordinate to hard bases,chemical systems A and B, in terms of the chemical potentials
and soft acids to soft bases” proposed by Pearisoh963, and and the softnesses of the isolated species, that allows one to
known as the hard and soft acids and bases (HSAB) pringiple, establish which is the optimum value of the softness of system
has been widely used, at a qualitative level, to explain many B for a given softness of system A.
acid—base reaction. Recently, the definitions of chemical The starting point makes use of the ground state electronic
potentiaf (electronegativity)u, hardnesss, and softne$sS energy expressidn
provided by density functional theofy,

E[p] = Fl[p] + [ dp p(r) V(r 3
1= (EIN), ) [p] = Flp] + [ dp p(r) V(r) 3)
and its associated Euletagrange equation
n = (PE/N?), = (9u/oN), and S=1/y = (N/du) (2) 5
F
(E is the total electronic ener i H= & V) “)
g is the total number of op(r)

electrons, and/(r) is the external potential generated by the
nuclei), have been used to carry out quantitative stédiéand with
to derive a theoretical proof of this principle=1® In particular,
Chattaraj, Lee, and Pafhave established that “among potential Flp] = Tlp] + el + Edpl (5)
partners of a given electronegativity, hard likes hard and soft
likes soft”. where p(r) is the electronic densityF[p] is the universal

The object of the present work is to derive an alternative Hohenberg-Kohn density functional, an@l[p], J[p], andEx[]
proof that may provide additional support for a better under- are the kinetic, the classical Coulomb interaction, and the
standing of the HSAB principle. The proof is based on an €xchange-correlation energy density functionals.
approximate expression for the interaction energy between two In order to obtain the dependence of the total electronic
energy on the chemical potential and the hardness, it is
€ Abstract published ilAdvance ACS Abstractgune 1, 1997. convenient first to introduce a core density(r), defined by°
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p(r) = pc(r) + Nf(r) (6)

where f(r) = (dp(r)/aN)y is the fukui functiod® and Ne

Letters

Now, let us consider the interaction energy between two
systems A and BAEag = Eag — Ea — Eg + Ehg, Where
Ef\g' is the nuclearnuclear repulsion energy. According to eq

represents an effective number of valence electrons (note that12 gne finds that

sincef(r) integrates to 1, thep(r) integrates td\, an effective
number of core electronBl; = N — Ne). This way, multiplying

eq 4 by the producNdf(r), integrating the resulting equation
overr, substituting the final equation in eq 3, and using eq 6
leads to

oFlel
(5 p(r )

f dr p(r)
[ dr pg OFlr] + [ dr por) (r) (7)
i p(r) ¢
It is convenient to introduce in eq 7 the functional expansions
of F[p] and of 6F/dp(r) in terms of their functional derivatives,
that {02223
SF[p] _

=fdr o(r) 5o(r)

Ty [ drdr’ p(r) p(r')

El[p] = Ngu + Fp] —

Flel

’Flp]
op(r") op(r)
6°Flp]
op(r') op(r) dp(r)

o [ f [ drdrrdr ofr) p(r) p(r")

®
and
B 2
oot~ A s oy
) o oy OFLel
b [ [ drrdr” () p(r") .9

0p(r") op(r') op(r)

1 2
— Ty Ngaglipg = Neatta
1 2
NeB‘uB + /2 N e B + Ecore[pAB] -
EcoreIpA] - Ecore{pB] + Exg (14)

where the quantitiesas andnag are the equilibrium chemical
potential and the hardness of the system AB, while the quantities

ua, Na, us, andyg are the chemical potentials and hardnesses
of the isolated species.

In order to simplify the term Ecord pas]l — Ecordpa]l —
Ecord pB]), first one may assume that the core densities of A
and B remain unchanged at any distance during the interaction
Peas (1) & pes (1) Reg) + pes (I, Reg) (WhereReg means that the
sum of the core densities is taken at the equilibrium distance
between A and B) and that there is practically no overlap
between the core densities of A and B at the equilibrium
distance. Under these circumstances, one can show tiNat if (
N) < 1, then the sum of the terms iE{d pas] — Ecord pa] —

Ecord 08]), associated with the first two terms in the right-hand
side of eq 13 is approximately equal toNaNg/Req If it is
further assumed that the core terms related with the second
functional derivatives of the kinetic and the exchange-correlation
energies cancel each other, then one can see that if A and B
have zero net charge, the terric{dpas] — Ecordpal —

Ecord pB]) is approximately equal to the negative of the average
nuclear-nuclear repulsion energy.

Now, sinceuas has been defined as the chemical potential
of AB at equilibrium, it is composed of two contributions. The
first one comes from the charge transfer, while the second one
comes from the change in the external potential. If the latter is
neglected, ther!'8

AE,g = Neagtiag
gl >N §A77A -

Thus, using eqs 8 and 9 in eq 7 and keeping terms up to second

order, one finds that

Elp] =Nyt =1, [ [ dr dr' [o(r) p(r') -
20r) prY] m(rr') + f dr pr) o) (10)

wheren(r,r') = [02F[p]/(dp(r") dp(r))] is the hardness kernel.
By recalling that the softness kern&r, r'), is the inverse of

tag X (g S+ ugSH)(Sy + ) (15)
whereSy = 1/pa and S = 1/ys.

In the case ofyag One can make use of the approximate
additivity of the softnesses of the constitutive pz8 to
evaluate the softness of the system AB. In general,

pe = USp * K(S + ) (16)

the hardness kernel, and that the integral of the softness kernel

overr' leads to the local softnes¥r), which in turn is the
product of the fukui functiorf(r) and the global softness(the
inverse of the hardness), one can show?hat

n=[drf(r)n(r.r) (11)

wherek is a proportionality constant. K= 2, eq 16 becomes
the arithmetic average, which has been found to give a fairly
good estimate of the global softness of a system in its
equilibrium state, in terms of the global softnesses of the
constitutive part®, while k= 1 corresponds to the assumption
of an harmonic mean approximation for the hardréss.

Thus, substituting egs 6 and 11 in eq 10 one finds that, to second Thus, substituting egs 15 and 16 in eq 14 and taking into

order,
Elp] = Nyt = 1, N2 + Ecordp] (12)
where
Esodo] = [ p(r) o(r) + ', [ [ dr o ! )p$(| U
Y, [ [ drdr’ pyr) p&r')% (13)

account the cancellation between the nucterrclear repulsion
energy and the core contribution, one obtains an approximate
expression for the interaction energy between two chemical
systems A and B, in terms of the chemical potentials and the
softnesses of the isolated species

UaSy + upSs k
AEpg = NeAsﬁ —,N gABm -
Nea ta + / NeAS Nep g + / NeBSB (17)

represents the core contribution to the total electronic energy. In order to find out if there is an optimum value of the softness

Equation 5 has been used in eq 13.

of system B for a given softness of system A, one may take the
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derivative of the interaction energy with respec&p keeping the contribution to the energy change due to the change in the
constant all the other variables. Using eq 17, this procedure hardness of the system as a whole with respect to the hardnesses
allows one to establish that the interaction energy becomes aof the separated species, because this contribution is not present

minimum when in eq 20. In the present approach this is not necessary, because
this contribution is already present in eq 14. However, in their
S=S01+ \/)—/)/(y -1 (18) second proof, the assumptions that led to eq 20 allowed them
to determine the changes in the grand potential of the two
where y = kNZg/N% + 2(us — ua)SaNeas/N 2z This species and to recognize that the assumption of equal changes

situation implies that for a given chemical potential difference in the grand potential leads to the HSAB principle. In the
and a given value o8, there is a value o0& that would lead present approach it is not possible to establish this result without
to the greatest possible stabilization energy. Other values of additional assumptions, because the separation of eq 14 in two
Ss may also lead to a favorable interaction between A and B, terms, one foirAEA and one forAEg, is not unique.

but the one given by eq 18 is the most favorable one. Note This analysis seems to indicate that eq 14, together with egs
that ify = 4, thenSy = S5, the HSAB principle. However, eq 15 and 16, includes, approximately, the contributions that arise
18 establishes that the optimum valueSsfis not necessarily  from the charge transfer process and the contributions that arise
equal toSy, because the position of the minimum depends also from the change in the external potential, even if the equilibrium
on the chemical potential difference between the two interacting chemical potential is approximated by the expression corre-

species. sponding to the case in which one only takes into account the
It is interesting to note that if = 4, then the proportionality = changes in the energy due to the charge transfer process,
constantk may be estimated from the expression neglecting the changes in the energy due to the changes in the
external potential.
k=4N iBlN iAB — 2(ug — 1p) Sa/Nepg (19) In conclusion, the proof presented here complements the work

of Chattaraj, Lee, and Parr and allows one to get a better
Since in general chemical potential differences are rather small, ynderstanding of the HSAB principle.

one could expect that the value of the proportionality constant
would be dominated by the first term in the right-hand side of References and Notes
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