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Making use of the approximate expression for the total energyE of a system, in terms of the chemical potential
µ and the hardnessη, E[F] ) Neµ - 1/2 Ne

2η + Ecore[F] , whereNe is an effective number of valence electrons
andEcore[F] represents the core contribution to the total energy, it is shown that the interaction between
species whose softnesses are approximately equal is energetically favored, relative to the interaction between
species whose softnesses are very different from each other.

The statement “hard acids prefer to coordinate to hard bases,
and soft acids to soft bases” proposed by Pearson1 in 1963, and
known as the hard and soft acids and bases (HSAB) principle,2

has been widely used, at a qualitative level, to explain many
acid-base reactions.3 Recently, the definitions of chemical
potential4 (electronegativity)µ, hardness5 η, and softness6 S
provided by density functional theory,7

(E is the total electronic energy,N is the total number of
electrons, andV(r ) is the external potential generated by the
nuclei), have been used to carry out quantitative studies8-14 and
to derive a theoretical proof of this principle.15-19 In particular,
Chattaraj, Lee, and Parr16 have established that “among potential
partners of a given electronegativity, hard likes hard and soft
likes soft”.
The object of the present work is to derive an alternative

proof that may provide additional support for a better under-
standing of the HSAB principle. The proof is based on an
approximate expression for the interaction energy between two

chemical systems A and B, in terms of the chemical potentials
and the softnesses of the isolated species, that allows one to
establish which is the optimum value of the softness of system
B for a given softness of system A.
The starting point makes use of the ground state electronic

energy expression7

and its associated Euler-Lagrange equation

with

where F(r ) is the electronic density,F[F] is the universal
Hohenberg-Kohn density functional, andT[F], J[F], andExc[F]
are the kinetic, the classical Coulomb interaction, and the
exchange-correlation energy density functionals.
In order to obtain the dependence of the total electronic

energy on the chemical potential and the hardness, it is
convenient first to introduce a core density,Fc(r ), defined by20X Abstract published inAdVance ACS Abstracts,June 1, 1997.

µ ) (∂E/∂N)V (1)

η ) (∂2E/∂N2)V ) (∂µ/∂N)V and S) 1/η ) (∂N/∂µ) (2)

E[F] ) F[F] +∫ dF F(r ) V(r ) (3)

µ )
δF[F]
δF(r )

+ V(r ) (4)

F[F] ) T[F] + J[F] + Exc[F] (5)
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where f(r ) ) (∂F(r )/∂N)V is the fukui function21 and Ne

represents an effective number of valence electrons (note that
sincef(r ) integrates to 1, thenFc(r ) integrates toNc, an effective
number of core electrons,Nc ) N- Ne). This way, multiplying
eq 4 by the productNef(r ), integrating the resulting equation
over r , substituting the final equation in eq 3, and using eq 6
leads to

It is convenient to introduce in eq 7 the functional expansions
of F[F] and ofδF/δF(r ) in terms of their functional derivatives,
that is20,22,23

and

Thus, using eqs 8 and 9 in eq 7 and keeping terms up to second
order, one finds that

whereη(r ,r ′) ) [δ2F[F]/(δF(r ′) δF(r ))] is the hardness kernel.
By recalling that the softness kernel,S(r , r ′), is the inverse of
the hardness kernel, and that the integral of the softness kernel
over r ′ leads to the local softnessS(r ), which in turn is the
product of the fukui functionf(r ) and the global softnessS(the
inverse of the hardness), one can show that24

Thus, substituting eqs 6 and 11 in eq 10 one finds that, to second
order,

where

represents the core contribution to the total electronic energy.
Equation 5 has been used in eq 13.

Now, let us consider the interaction energy between two
systems A and B,∆EAB ) EAB - EA - EB + EAB

NN, where
EAB
NN is the nuclear-nuclear repulsion energy. According to eq

12 one finds that

where the quantitiesµAB andηAB are the equilibrium chemical
potential and the hardness of the system AB, while the quantities
µA, ηA, µB, andηB are the chemical potentials and hardnesses
of the isolated species.
In order to simplify the term (Ecore[FAB] - Ecore[FA] -

Ecore[FB]), first one may assume that the core densities of A
and B remain unchanged at any distance during the interaction
FcAB (r ) ≈ FcA (r , Req) + FcB (r , Req) (whereReqmeans that the
sum of the core densities is taken at the equilibrium distance
between A and B) and that there is practically no overlap
between the core densities of A and B at the equilibrium
distance. Under these circumstances, one can show that if (Ne/
N) , 1, then the sum of the terms in (Ecore[FAB] - Ecore[FA] -
Ecore[FB]), associated with the first two terms in the right-hand
side of eq 13 is approximately equal to-NANB/Req. If it is
further assumed that the core terms related with the second
functional derivatives of the kinetic and the exchange-correlation
energies cancel each other, then one can see that if A and B
have zero net charge, the term (Ecore[FAB] - Ecore[FA] -
Ecore[FB]) is approximately equal to the negative of the average
nuclear-nuclear repulsion energy.
Now, sinceµAB has been defined as the chemical potential

of AB at equilibrium, it is composed of two contributions. The
first one comes from the charge transfer, while the second one
comes from the change in the external potential. If the latter is
neglected, then7,18

whereSA ) 1/ηA andSB ) 1/ηB.
In the case ofηAB one can make use of the approximate

additivity of the softnesses of the constitutive parts25,26 to
evaluate the softness of the system AB. In general,

wherek is a proportionality constant. Ifk ) 2, eq 16 becomes
the arithmetic average, which has been found to give a fairly
good estimate of the global softness of a system in its
equilibrium state, in terms of the global softnesses of the
constitutive parts26, while k ) 1 corresponds to the assumption
of an harmonic mean approximation for the hardness.27

Thus, substituting eqs 15 and 16 in eq 14 and taking into
account the cancellation between the nuclear-nuclear repulsion
energy and the core contribution, one obtains an approximate
expression for the interaction energy between two chemical
systems A and B, in terms of the chemical potentials and the
softnesses of the isolated species

In order to find out if there is an optimum value of the softness
of system B for a given softness of system A, one may take the

F(r ) ) Fc(r ) + Nef(r ) (6)

E[F] ) Neµ + F[F] -∫ dr F(r )
δF[F]
δF(r )

+

∫ dr Fc(r )
δF[F]
δF(r )

+∫ dr Fc(r ) V(r ) (7)

F[F] )∫ dr F(r )
δF[F]
δF(r )

-

1/2∫∫ dr dr ′ F(r ) F(r ′)
δ2F[F]

δF(r ′) δF(r )
+

1/6∫∫∫ dr dr ′ dr ′′ F(r ) F(r ′) F(r ′′)
δ3F[F]

δF(r ′′) δF(r ′) δF(r )
+ ...

(8)

δF[F]
δF(r )

)∫ dr ′ F(r ′)
δ2F[F]

δF(r ′) δF(r )
-

1/2∫∫ dr ′ dr ′′ F(r ′) F(r ′′)
δ3F[F]

δF(r ′′) δF(r ′) δF(r )
+ ... (9)

E[F] ) Neµ - 1/2∫∫ dr dr ′ [F(r) F(r ′) -

2Fc(r ) F(r ′)] η(r ,r ′) +∫ dr Fc(r ) V(r ) (10)

η )∫ dr ′ f(r ) η(r ,r ′) (11)

E[F] ) Neµ - 1/2N e
2η + Ecore[F] (12)

Ecore[F] )∫ dr Fc(r ) V(r ) + 1/2∫∫ dr dr ′ Fc(r ) Fc(r ′)
|r - r ′| +

1/2∫∫ dr dr ′ Fc(r ) Fc(r ′)
δ2(T[F] + Exc[F])

δF(r ′) δF(r )
(13)

∆EAB ) NeABµAB - 1/2N eAB
2 ηAB - NeA µA +

1/2N eA
2 ηA - NeB µB + 1/2N eB

2 ηB + Ecore[FAB] -

Ecore[FA] - Ecore[FB] + EAB
NN (14)

µAB ≈ (µA SA + µBSB)/(SA + SB) (15)

ηAB ) 1/SAB ≈ k/(SA + SB) (16)

∆EAB ) NeAB

µASA + µBSB
SA + SB

- 1/2N eAB
2 k

(SA + SB)
-

NeA µA + 1/2N eA
2 1
SA

- NeB µB + 1/2N eB
2 1
SB

(17)
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derivative of the interaction energy with respect toSB, keeping
constant all the other variables. Using eq 17, this procedure
allows one to establish that the interaction energy becomes a
minimum when

where y ) kN eAB
2 /N eB

2 + 2(µB - µA)SANeAB/N eB
2 . This

situation implies that for a given chemical potential difference
and a given value ofSA there is a value ofSB that would lead
to the greatest possible stabilization energy. Other values of
SB may also lead to a favorable interaction between A and B,
but the one given by eq 18 is the most favorable one. Note
that if y ) 4, thenSA ) SB, the HSAB principle. However, eq
18 establishes that the optimum value ofSB is not necessarily
equal toSA, because the position of the minimum depends also
on the chemical potential difference between the two interacting
species.
It is interesting to note that ify ) 4, then the proportionality

constantk may be estimated from the expression

Since in general chemical potential differences are rather small,
one could expect that the value of the proportionality constant
would be dominated by the first term in the right-hand side of
eq 19. Under this approximation,k ) 1, the harmonic
approximation, implies thatN eB

2 /N eAB
2 ) 1/4, a value that may

be obtained if one assumes thatNeA ≈ 1,NeB≈ 1, andNeAB ≈
NeA + NeB≈ 2. On the other hand, under the same approxima-
tion, k ) 2, the arithmetic average, implies thatN eB

2 /N eAB
2 )

1/2, a value that may be obtained if one assumes thatNeB≈ 1,
andNeB)x2. Thus one can see that eq 19, which corresponds
to the case in whichy ) 4, may lead, under very reasonable
assumptions, to values of the proportionality constantk that lie
very close to the values ofk obtained from experimental data.
Therefore, one may conclude thaty ≈ 4 and that the optimum
value ofSB lies very close toSA, as stated in the HSAB principle.
It is important to note that if one assumes thatEAB ≈ EA +

EB and one determines the energy changes in A and in B, taking
into account the charge transfer between A and B, to produce
a common chemical potential, and neglecting the contribution
that comes from the changes in the external potential, then, using
eq 12, one can show that the interaction energy will be given
by

where it has also been assumed that the hardnesses of A and B
remain unchanged after the charge transfer process. Equation
20 was the starting point of Chattaraj, Lee, and Parr16 to prove
the HSAB principle. Thus, in their first proof, which is based
on a minimization energy argument like the one described in
this work, they had to introduce through qualitative arguments

the contribution to the energy change due to the change in the
hardness of the system as a whole with respect to the hardnesses
of the separated species, because this contribution is not present
in eq 20. In the present approach this is not necessary, because
this contribution is already present in eq 14. However, in their
second proof, the assumptions that led to eq 20 allowed them
to determine the changes in the grand potential of the two
species and to recognize that the assumption of equal changes
in the grand potential leads to the HSAB principle. In the
present approach it is not possible to establish this result without
additional assumptions, because the separation of eq 14 in two
terms, one for∆EA and one for∆EB, is not unique.
This analysis seems to indicate that eq 14, together with eqs

15 and 16, includes, approximately, the contributions that arise
from the charge transfer process and the contributions that arise
from the change in the external potential, even if the equilibrium
chemical potential is approximated by the expression corre-
sponding to the case in which one only takes into account the
changes in the energy due to the charge transfer process,
neglecting the changes in the energy due to the changes in the
external potential.
In conclusion, the proof presented here complements the work

of Chattaraj, Lee, and Parr and allows one to get a better
understanding of the HSAB principle.
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SB ) SA(1+ xy)/(y- 1) (18)

k) 4N eB
2 /N eAB

2 - 2(µB - µA) SA/NeAB (19)

∆EAB ≈ - 1
2

(µA - µB)
2

ηA + ηB
(20)
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